How to prove
$$ \frac{\sqrt{8}}{9801}\sum_{n=0}^{\infty}\frac{(4n)!(1103+26390n)}{(n!)^4 396^{4n}}=\frac{1}{\pi}, $$
which actually looks like coincidence?
How to prove
$$ \frac{\sqrt{8}}{9801}\sum_{n=0}^{\infty}\frac{(4n)!(1103+26390n)}{(n!)^4 396^{4n}}=\frac{1}{\pi}, $$
which actually looks like coincidence?