For $n,k,m\ge 1$ integer, define $$S(n,m,k)=\sum_{A\subset\{1,\ldots,n\},\\\#A=k}\left(\prod_{a\in A}(-1)^a2^m\cos^m\left(\frac{a\pi}n\right)\right).$$ In other words, $S(n,m,k)$ is the $k$'th elementary symmetric polynomial evaluated in $$-2^m\cos^m\left(\frac{\pi}n\right),2^m\cos^m\left(\frac{2\pi}n\right),\ldots,(-1)^n2^m\cos^m\left(\frac{n\cdot n\pi}n\right).$$ It seems like all $S(n,m,k)$ are integer. Can anyone prove or refute this?
If they are all integer, I'd like to find some 'combinatorical' formula for $S(n,m,k)$, containing only polynomials, powers of integers and factorials.
The closest I've gotten is the following identity: $$2+\prod_{j=1}^{2n}\left(X-2\cos\left(\frac{\pi k}n\right)\right)=2\sum_{j=0}^nX^{2n-2j}(-1)^j\frac{n(2n-j-1)!}{(2n-2j)!j!}$$