1

‎Let‎ ‎$‎‎f:‎\mathbb{R}\to‎\mathbb{R}‎$ be a Riemann integrable probability density function on every closed ‎interval ‎of ‎‎$‎‎‎\mathbb{R}‎$‎. As I explained in my previous question (Does there exist any probability density function ‎$‎f:‎\mathbb{R}\to‎\mathbb{R}‎$ ‎which is not Riemann integrable?) , Now I have 2 questions as follows:

Question‎(1)‎‎‎‎ ‎Is ‎‎$‎‎\int_{-‎\infty‎}^{+\infty}f(x)dx=‎‎\int_{-‎\infty‎}^{0}f(x)dx+‎‎\int_{0‎}^{+\infty}f(x)dx‎‎$ ‎convergent?‎

Question‎‎‎(2) Is ‎$‎‎\lim_{x\to +‎\infty‎}f(x)=0$ true?

  • 1
    See https://math.stackexchange.com/questions/829927/general-condition-that-riemann-and-lebesgue-integrals-are-the-same – M.H.Hooshmand Dec 20 '18 at 09:32

1 Answers1

2

For question 1) the answer is YES and it follows from the fact that the Riemann integral of a Riemann integrable fucntion coincides with the Lebesgue integral. For question 2) the answer is NO: let $f(x)=c\sum nI_{(n,n+\frac 1 {n^{3}})}$ where $c$ is chosen such that $f$ integrates to $1$.