2

For the vector space of continuous functions on $[0,1]$ Define the inner product as $$\langle f,g\rangle = \int_0^1f(x)g(x)\mathrm{d}x$$ Please help me to prove the Cauchy Schwarz inequality for this given inner product.

Cauchy Schwarz Inequality: $|\langle v,u\rangle|\leq \lVert v\rVert\lVert u\rVert$ for the elements $v,u$ in the inner product space.

user0102
  • 21,572
DD90
  • 629
  • 7
  • 15

1 Answers1

3

$\int (f-ag) ^{2} \geq 0$ so $\int f^{2}-2a\int fg +a^{2}\int g^{2} \geq 0$. Just put $a=\frac {\int fg} {\int g^{2}}$ and simplify.