I am trying to prove the convergence of $$\sum_{n=1}^{\infty}\frac{(-1)^n}{n-(-1)^n}.$$ This is what I did: \begin{align} \sum_{n=1}^{\infty}\frac{(-1)^n}{n-(-1)^n} &= \sum_{n=1}^{\infty}\frac{(-1)^n}{n-(-1)^n} \cdot \frac{n+(-1)^n}{n+(-1)^n} \\&= \sum_{n=1}^{\infty}\frac{(-1)^n\cdot n + (-1)^{2n}}{n^2-(-1)^{2n}} \\&= \sum_{n=1}^{\infty}\frac{(-1)^n\cdot n + 1}{n^2-1} \\&= \sum_{n=1}^{\infty}\frac{(-1)^n\cdot n}{n^2-1} + \sum_{n=1}^{\infty}\frac{1}{n^2-1}. \end{align}
Now I am stuck, I don't know how to continue, because the first term doesn't even exists (dividing $0$). Can somebody help me?