Let E be splitting field of $x^3+x+1 \in \mathbb{Q}[X]$ over $\mathbb{Q}$.
Proof that Gal{E/$\mathbb{Q}$}$\cong S_3$. Specify all extension fields L with $\mathbb{Q} \subset L \subset E$ and the degree [L : $\mathbb{Q}$] of the extensions.
Set $f(x):= x^3+x+1 \in \mathbb{Q}[X]$. It's easy to see that f is irreducible over $\mathbb{Q}$.
At first, I wanted to determine E. With Cardano formula I got the complex roots
$$x_2 = \sqrt[3]{- \frac{1}{2} + \sqrt{\frac{31}{108}}} + i \sqrt[3]{\frac{1}{2} + \sqrt{\frac{31}{108}}}\quad\text{and}\quad x_3 = \sqrt[3]{- \frac{1}{2} + \sqrt{\frac{31}{108}}} - i \sqrt[3]{\frac{1}{2} + \sqrt{\frac{31}{108}}}$$
Since f has degree 3, the roots $x_2, x_3$ must be simple. So it exists another real root $x_1$ of f. Therefore we can write $f(x)= (x-x_1)(x-x_2)(x-x_3)$ in $E[x] \Rightarrow f$ is separable and E is splitting field of $f \Rightarrow E/\mathbb{Q}$ is galois. We got that: $[E:K] = |Gal(E/K)| \Leftrightarrow E/K$ is galois. So $|Gal(E/ \mathbb{Q})| = [E:\mathbb{Q}]$.
Now i don't know how to go on. Can i somehow get the degree of E/$\mathbb{Q}$ by means of $x_1, x_2, x_3$? And how can i easily calculate $x_1$ or isn't that necessary to solve the problem?
Thanks a lot!