Using that $|a|+|b|\geq|a+b|$ \begin{align} |-x|+|x+y| \geq |-x+x+y| = |y|\\ |-y|+|x+y| \geq |-y+x+y| = |x| \end{align}
Substracting $|-x|$ from the first inequality and $|-y|$ from the second:
\begin{align} |x+y| \geq |y|-|-x| \\ |x+y| \geq |x| - |-y| \end{align}
Using the fact that if $a \geq b$ and $a \geq -b$ then $a \geq |b|$.
\begin{align} |x+y| \geq ||x| - |-y|| = ||x| - |y|| \end{align}
Is the above correct?