Exponential form is the easiest.
$\sqrt{3} + i = r*e^{i\theta}(\cos \theta + i \sin \theta)$ where $r = \sqrt{\sqrt{3}^2 + 1^2} = 2$ and $\cos \theta = \frac {\sqrt{3}}2$ and $\sin \theta = \frac 12$ So $\theta = \frac {\pi}2$.
So $(\sqrt{3}+i)^{50} = 2^{50}e^{i\frac {50\pi}6}=2^{50}e^{i(8\pi + \frac 13\pi)}=2^{50}e^{i\frac {\pi}3}$
$= 2^{50}(\cos \frac {\pi}3 + i\sin \frac {\pi}3) = 2^{49} + i2^{49}\sqrt{3}$.
======
Alternatively you can try a few powers and see if patterns emerge.
$(\sqrt 3 + i)^2 = (3 -1) + 2(\sqrt 3)i = 2(1+\sqrt 3 i)$.
$(\sqrt 3 + i)^3 = 2(1 + \sqrt 3i)(\sqrt 3 +i) =2[(\sqrt 3-\sqrt 3)+ (3 + 1)i]= 8i$. (!!! single term !!!)$
$(\sqrt 3+ i)^{48}=((\sqrt 3+ i)^3)^{16}=(8i)^{16} = 8^{16}*i^{16} = (2^3)^{16}*1 = 2^{48}$
So $(\sqrt 3+i)^{50} = 2^{48}(\sqrt 3 + i)^2 = 2^{48}*2(1+\sqrt 3 i)= 2^{49} + 2^{49}\sqrt 3i$.
.....
It's a nice thing to learn that $[\frac 12(\sqrt {3} + i)]^3 = i$ and $[\frac 12(\sqrt {3} + i)]^{12} = 1$. So $\frac 12(\sqrt {3} + i)$ is one of the twelve twelfth roots of $1$.