If $$x=y+\sqrt{y^2+1}$$ Then how to write $y$ in terms of $x$? Please tell me some hints
-
1What have you tried so far? What if you square both sides? x²=... Then solve for y. – F. Knorr Dec 16 '18 at 16:59
-
1Note that $\log(x) = \sinh^{-1}(y)$ and then $y = \sinh(\log(x))$ – Dec 16 '18 at 17:04
4 Answers
Hint: Just bring $y$ to the other side then square both sides.
$$x = y+\sqrt{y^2+1}$$
$$x-y = \sqrt{y^2+1}$$
$$(x-y)^2 = y^2+1$$
Here, note that $(a\pm b)^2 = a^2\pm 2ab+b^2$, and after necessary simplification, it should be clear enough.

- 7,176
-
-
-
-
Yesss . That one. Cubic function! How to write y in terms of x in $x^3+2x=y^3+2y-1$ – user602338 Dec 16 '18 at 17:10
Hint. Note that $\text{arcsinh}(y)=\log(y+\sqrt{y^2+1})$. See Inverse hyperbolic sine.

- 145,942
As $(\sqrt{y^2+1}-y)(\sqrt{y^2+1}+y)=\cdots=1,$
$\sqrt{y^2+1}+y=x\iff \sqrt{y^2+1}-y=\dfrac1x$
$x-\dfrac1x=?$

- 274,582
-
See https://math.stackexchange.com/questions/400403/solve-sqrtx4-sqrtx1-1-for-x/400410#400410 https://math.stackexchange.com/questions/616536/how-to-solve-for-x-in-sqrt4x27-sqrt455-x-4/616537#616537 – lab bhattacharjee Dec 16 '18 at 17:11
-
1
I assume that
$x, y \in \Bbb R. \tag 0$
We are given
$x = y + \sqrt{y^2 + 1}. \tag 1$
We observe that this equation implies
$x > 0, \forall y \in \Bbb R, \tag{1.2}$
since
$y^2 < y^2 + 1 \Longrightarrow \vert y \vert < \sqrt{y^2 + 1}; \tag{1.5}$
we proceed:
$x - y = \sqrt{y^2 + 1}; \tag 2$
$x^2 - 2xy + y^2 = (x - y)^2 = y^2 + 1; \tag 3$
$x^2 - 2xy = 1; \tag 4$
$2xy = x^2 - 1; \tag 5$
by virtue of (1.2), we may divide by $2x$:
$y = \dfrac{x^2 - 1}{2x}. \tag 6$
CHECK:
From (6),
$y^2 = \dfrac{(x^2 - 1)^2}{4x^2} = \dfrac{1 - 2x^2 + x^4}{4x^2}; \tag 7$
$y^2 + 1 = \dfrac{1 - 2x^2 + x^4}{4x^2} + 1 = \dfrac{1 - 2x^2 + x^4}{4x^2} + \dfrac{4x^2}{4x^2} = \dfrac{1 + 2x^2 + x^4}{4x^2} = \dfrac{(1 + x^2)^2}{4x^2}; \tag 8$
and again, by virtue of (1.2), we may apply $\sqrt \cdot$ to both sides and find
$\sqrt{y^2 + 1} = \dfrac{1 + x^2}{2x}; \tag 9$
$y + \sqrt{y^2 + 1} = \dfrac{x^2 - 1}{2x} + \dfrac{1 + x^2}{2x} = \dfrac{2x^2}{2x} = x. \tag{10}$

- 71,180