The problem here is that there is no such vector $x$ that satisfies
$$
Ax = u+v+w.$$ We can see this easily from the fact that
$$\operatorname{ran} A =\operatorname{span}\{v,w\}.$$
$\textbf{EDIT:}$ Our problem can be written as follows. First, find $y \in \operatorname{ran}A$ (that is, $y=Ax$ for some $x$)
such that
$$
\lVert y-(u+v+w)\rVert \leq \lVert z-(u+v+w)\rVert,\quad\forall z\in\operatorname{ran}A.
$$ Then find $x\in\mathbb{R}^3$ such that $Ax=y$ and
$$
\lVert x\rVert\leq \lVert x'\rVert, \quad\forall x':Ax'=y.
$$
Firstly, the solution $y$ is given by the orthogonal projection $P(u+v+w)$ of $u+v+w$ onto $\operatorname{ran} A$. What we need to do is to compute $Pu$ since $P(v+w) = v+w$. To do this, let
$$
Pu = \alpha v +\beta w.$$ It should be that
$$
u-Pu = u-(\alpha v +\beta w) \perp v,w.
$$ This gives a system of equations about $\alpha,\beta$:
$$
\langle u,v\rangle=\alpha \langle v,v \rangle +\beta \langle w,v \rangle,
$$ and
$$
\langle u,w\rangle= \alpha\langle v,w \rangle+ \langle w,w \rangle.
$$ (If $A$ is normal, then we have $\langle u,v\rangle=\langle v,w\rangle=\langle w,v\rangle=0$. But this is not true in general.)
Solving this equation gives $y =(\alpha+1)v + (\beta+1)w$. Finally, note that
$$
A^{-1}(\{y\}) = \{\frac{(\alpha+1)}{3}v+\frac{(\beta+1)}{7}w+\gamma u\;|\;\gamma\in\mathbb{R}\}.$$
To minimize $\lVert x \rVert$ over $x\in A^{-1}(\{y\})$, it must be that
$$
x =\frac{(\alpha+1)}{3}v+\frac{(\beta+1)}{7}w+\gamma u \perp u.
$$
This gives us
$$
x = \frac{(\alpha+1)}{3}\left(v-\frac{\langle v,u\rangle}{\lVert u \rVert^2}u\right) + \frac{(\beta+1)}{7}\left(w-\frac{\langle w,u\rangle}{\lVert u \rVert^2}u\right).
$$