So far I have $\lim_{n\rightarrow \infty}\frac{\sqrt[n]{n^n}}{\sqrt[n]{n!}}=\lim_{n\rightarrow \infty}\frac{n}{\sqrt[n]{n}\sqrt[n]{n-1}...\sqrt[n]1}$
I know that $\lim_{n\rightarrow\infty}\sqrt[n]{n}=\lim_{n\rightarrow\infty}\sqrt[n]{1}=1$.
How do I have the argue when using the sandwichtheorem, i.e. how do I know that
$\lim_{n\rightarrow\infty}\sqrt[n]{n}\leq\lim_{n\rightarrow\infty}\sqrt[n]{k}\leq\lim_{n\rightarrow\infty}\sqrt[n]{1},\forall 1<k<n$
?