In the same vein as:
$ \frac{\pi ^2}{6} = 1 + \frac{1}{4} + \frac{1}{9} + \frac{1}{25} \cdots $
Starting with:
$ \displaystyle \prod_{n=1}^{\infty} \left( 1 -\frac{q^2}{n^2} \right) = \frac{\sin(\pi q)}{\pi q}$
I've noticed that:
$ - \frac{\pi ^2}{3!} = \displaystyle \sum_{j_1=1}^{\infty} -j_1^{-2} $
$ \frac{\pi ^4}{5!} = \displaystyle \sum_{j_1,j_2=1 \atop j_1 \neq j_2}^{\infty} (j_1j_2)^{-2}$
$ - \frac{\pi ^6}{7!} = \displaystyle \sum_{j_1,j_2,j_3=1 \atop j_i \neq j_k} - (j_1j_2j_3)^{-2}$
$ \vdots $
$ \frac{\pi ^{2n}}{(2n+1)!} = \displaystyle \sum_{j_1,...j_n=1 \atop j_i \neq j_k}^{\infty} (j_1j_2...j_n)^{-2}$
$ \vdots $
(Steps shown here: http://www.futurebird.com/?p=156 )
Is there a more direct way to reach the same result that avoids a high power theorem like the Weierstrass factorization theorem ... which is what I use.
I'm enjoying playing with these concepts so I'd also like reading recommendations.