Prove using the definition of a limit that $$\displaystyle{\lim_{n\to\infty}\underbrace{\sqrt{n^2+n}-n}_{s_n}}=\frac{1}{2}.$$
Proof:
Let $\epsilon>0$ and $n\in\mathbb{N}$, then $$\left|\sqrt{n^2+n}-n-\frac12\right|\stackrel{(*)}{=}\left|\frac{n-\sqrt{n^2+n}}{2(n+\sqrt{n^2+n})}\right|=\left|\frac{n}{2(n+\sqrt{n^2+n})^2}\right|=\left|\frac{n}{4n^2+4n\sqrt{n^2+n}+2n}\right|<\left|\frac{n}{4n\sqrt{n^2+n}+2n}\right|=\left|\frac{1}{4\sqrt{n^2+n}+2}\right|$$ Since $\forall n\in\mathbb{N}\,\,\sqrt{n^2+n}>\sqrt{n}\,$ then $$\left|\frac{1}{4\sqrt{n^2+n}+2}\right|<\left|\frac{1}{4\sqrt{n}}\right|<\epsilon\quad\text{ if }\quad n>\frac{1}{16\epsilon^2}.$$
Would this be correct?
(*) maybe a simpler way would be to recognize that the numerator is $|s_n|<1?$