Prove that
$$ \int \frac1{5S_{8} - 9S_{10} + 7S_{12} - 2S_{14}} {\rm d}x = 2x - \arctan \left( \frac{\tan2x}{2 + \tan^22x} \right) + C$$
where $S_n = \sin^n(x) + \cos^n(x)$.
Even differentiating the right doesn't end up with anything close to that monster integrand.
$$ \frac{{\rm d}}{{\rm d}x} \left( 2x - \arctan \left( \frac{\tan2x}{2 + \tan^22x} \right) + C \right) \\ = 2 + \frac{(\tan^22x+1)(2\tan^22x-4)}{\tan^42x+5\tan^22x+4} \\ = \frac{ 4 } {\sin^42x+ 5\sin^22x\cos^22x + 4\cos^42x} \\ = \frac1{\sin^8x + \sin^2x\cos^6x +\cos^2x\sin^6x + \cos^8x} $$
$$S_{m+2}=\sin^mx(1-\cos^2x)+\cos^mx(1-\sin^2x)=S_m-\sin^2x\cos^2xS_{m-2}$$
– lab bhattacharjee Dec 13 '18 at 14:38