Let E/K be a field extension, $1+1\neq0$ in K and $\alpha$, $\beta \in K^x=\{a \in K |\, \exists \, b: ab = ba =1\}$.
Proof with Galois theory: $K(\sqrt \alpha) = K(\sqrt \beta) \Leftrightarrow \exists \, \gamma \in K^x : \alpha = \gamma^2\beta$
Got so far that $\sqrt \alpha, \sqrt \beta \notin K \Rightarrow [K(\sqrt \alpha):K]= 2 =[K(\sqrt \beta):K] \overset{char(K) \neq 2}\Rightarrow K(\sqrt \alpha), K(\sqrt \beta)$ are galois.