$\newcommand{\bbx}[1]{\,\bbox[15px,border:1px groove navy]{\displaystyle{#1}}\,}
\newcommand{\braces}[1]{\left\lbrace\,{#1}\,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack}
\newcommand{\dd}{\mathrm{d}}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,}
\newcommand{\ic}{\mathrm{i}}
\newcommand{\mc}[1]{\mathcal{#1}}
\newcommand{\mrm}[1]{\mathrm{#1}}
\newcommand{\pars}[1]{\left(\,{#1}\,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}}
\newcommand{\root}[2][]{\,\sqrt[#1]{\,{#2}\,}\,}
\newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}}
\newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$
$\ds{\sum_{i = 0}^{k}\sum_{j = 0}^{\ell}
{i + j \choose i} = {k + \ell + 2 \choose k + 1} - 1:\ {\LARGE ?}.\qquad k, \ell \in \mathbb{N}}$.
\begin{align}
&\bbox[10px,#ffd]{\sum_{i = 0}^{k}\sum_{j = 0}^{\ell}
{i + j \choose i}} =
\sum_{i = 0}^{k}\sum_{j = 0}^{\ell}{i + j \choose j} =
\sum_{i = 0}^{k}\sum_{j = 0}^{\ell}{-i - 1 \choose j}
\pars{-1}^{\,j}
\\[5mm] = &\
\sum_{i = 0}^{k}\sum_{j = 0}^{\ell}\pars{-1}^{\,j}
\bracks{z^{\, j}}\pars{1 + z}^{-i - 1} =
\sum_{i = 0}^{k}\sum_{j = 0}^{\ell}\pars{-1}^{\,j}
\bracks{z^{0}}{1 \over z^{\, j}}\,\pars{1 + z}^{-i - 1}
\\[5mm] = &\
\bracks{z^{0}}\sum_{i = 0}^{k}\pars{1 \over 1 + z}^{i + 1}
\sum_{j = 0}^{\ell}\pars{-\,{1 \over z}}^{\,j}
\\[5mm] = &\
\bracks{z^{0}}\braces{{1 \over 1 + z}\,
{\bracks{1/\pars{1 + z}}^{k + 1} - 1 \over 1/\pars{1 + z} - 1}}
\braces{{\pars{-1/z}^{\ell + 1} - 1 \over -1/z - 1}}
\\[5mm] = &\
\bracks{z^{0}}\braces{%
{1 - \pars{1 + z}^{k + 1} \over -z}
\,{1 \over \pars{1 + z}^{k + 1}}}
\braces{{\pars{-1}^{\ell + 1} - z^{\ell + 1} \over -1 - z}\,{z \over z^{\ell + 1}}}
\\[5mm] = &\
\bracks{z^{\ell + 1}}\braces{1 - {1 \over \pars{1 + z}^{k + 1}}}
\braces{z^{\ell + 1} + \pars{-1}^{\ell} \over 1 + z}
\\[5mm] = &\
\pars{-1}^{\ell}\bracks{z^{\ell + 1}}
\bracks{\pars{1 + z}^{-1} - \pars{1 + z}^{-k - 2}}
\\[5mm] = &\
\pars{-1}^{\ell}\bracks{\pars{-1}^{\ell + 1} - {-k - 2 \choose \ell + 1}}
\\[5mm] = &\
-1 - \pars{-1}^{\ell}\,{-\bracks{-k - 2} + \bracks{\ell + 1} - 1 \choose \ell + 1}\pars{-1}^{\ell + 1}
\\[5mm] = &\
-1 + { k + \ell + 2 \choose \ell + 1} =
\bbx{{k + \ell + 2 \choose k + 1} - 1}
\end{align}