Question:
Let A = \begin{bmatrix} 1 & 1 \\ 1 & 1 \\ \end{bmatrix}
Find all eigenvalues and eigenvectors of the martrix:
$$\sum_{n=1}^{100} A^n = A^{100} +A^{99} +...+A^2+A$$
I know that the eigenvectors of A are \begin{bmatrix} 1 \\ 1 \end{bmatrix} and \begin{bmatrix} 1 \\ -1 \end{bmatrix} But I do not see any sort of correlation with the sum term and A's eigenvectors.