Harmonic numbers are usually defined, for $n\in\Bbb N$, by $$H_n=\sum_{k=1}^{n}\frac1k$$ But then one may note, $$H_n=\sum_{k=1}^{n}\int_0^1x^{k-1}\mathrm dx=\int_0^1\frac{1-x^n}{1-x}\mathrm dx=\int_0^1\frac{x^n-1}{x-1}\mathrm dx$$ Which provides somewhat of an extension to real $n>-1$. Hence I define $$H(n)=\int_0^1\frac{x^n-1}{x-1}\mathrm dx$$ And I begin on finding a general expression for $H\big(\frac{2n+1}2\big)$ for $n\in\Bbb N\cup\{-1,0\}$.
I start by defining the polynomial $P_k(x)$ for $k\in \Bbb N$ by the property $$x^n-1=(x-1)P_k(x)$$ It is fairly easily shown that $$P_k(x)=\sum_{m=0}^{k-1}x^m$$ Which leads us to the great fact that $$H_n=\int_0^1P_n(x)\mathrm dx$$ With this in mind we begin the integral $$H\bigg(\frac{2n+1}2\bigg)=\int_0^1\frac{x^{(2n+1)/2}-1}{x-1}\mathrm dx$$ we make the substitution $x=u^2$: $$H\bigg(\frac{2n+1}2\bigg)=2\int_0^1\frac{u^{2n+1}-1}{u^2-1}u\mathrm du$$ $$H\bigg(\frac{2n+1}2\bigg)=2\int_0^1P_{2n+1}(u)\frac{u\mathrm du}{u+1}$$ $$H\bigg(\frac{2n+1}2\bigg)=2\int_0^1P_{2n+1}(u)\bigg(1-\frac{1}{u+1}\bigg)\mathrm du$$ $$H\bigg(\frac{2n+1}2\bigg)=2\int_0^1P_{2n+1}(u)\mathrm du-2\int_0^1P_{2n+1}(u)\frac{\mathrm du}{u+1}$$ $$H\bigg(\frac{2n+1}2\bigg)=2H_{2n+1}-2\int_0^1P_{2n+1}(u)\frac{\mathrm du}{u+1}$$
Using The series for $P_k$, we have $$ \begin{align} \int_0^1P_{2n+1}(x)\frac{\mathrm dx}{x+1}=&\int_0^1\sum_{i=0}^{2n}\frac{x^i}{x+1}\mathrm dx\\ =&\sum_{i=0}^{2n}\int_0^1\frac{x^i}{x+1}\mathrm dx\\ =&\int_0^1\frac{\mathrm dx}{x+1}+\sum_{i=1}^{2n}\int_0^1\frac{x^i}{x+1}\mathrm dx\\ =&\log2+\sum_{i=1}^{2n}\int_0^1\frac{x^i}{x+1}\mathrm dx\\ =&\log2+? \end{align} $$
I do not know what the best approach for this final integral would be. Could I have some help?