0

A question from G.Polya:

prove $$1 + \frac 1 4 + \frac 1 9 + \frac 1 {16} + \cdots = \log x \cdot \log (1 - x) + \frac {x+(1-x)} {1} + \frac {x^2 + (1-x)^2}{4}+\frac{x^3+(1-x)^3}{9}+\cdots$$ for $0<x<1$.

The answer says:

$\sum_{n=1}^\infty \frac{x^n}{n^2}=\int_0^x \sum_{n=1}^\infty \frac{t^{n-1}}{n}dt = - \int_0^{x} t^{-1}\log(1-t)dt;$

integrate by parts then introduce as new variable of integration $s=1-t$.

Following the answer, I got $$- \int_0^{x} t^{-1}\log(1-t)dt=-\log(1-x)\log x+\int _1^ {1-x}\frac{\log(1-t)}tdt.$$

But how to proceed?

Hongyan
  • 283

1 Answers1

-1

Start from your last eqution:

$- \int_0^{x} t^{-1}\log(1-t)dt=-\log(1-x)\log x+\int _1^ {1-x}\frac{\log(1-t)}tdt$

Easy to realize that

$-Li_2(x)=-\ln x ln(1-x)+Li_2(1-x)$

where $Li_2(x)$ is polylogarithm function (Spence-function).

$Li_2(x)+Li_2(1-x)=\frac{\pi^2}{6}- \ln x ln(1-x)$

is one of the known $Li_2$ identities

As $\sum\limits_{n=1}^\infty \frac{1}{n^2}=\frac{\pi^2}{6}$ we are ready.

JV.Stalker
  • 1,533