A question from G.Polya:
prove $$1 + \frac 1 4 + \frac 1 9 + \frac 1 {16} + \cdots = \log x \cdot \log (1 - x) + \frac {x+(1-x)} {1} + \frac {x^2 + (1-x)^2}{4}+\frac{x^3+(1-x)^3}{9}+\cdots$$ for $0<x<1$.
The answer says:
$\sum_{n=1}^\infty \frac{x^n}{n^2}=\int_0^x \sum_{n=1}^\infty \frac{t^{n-1}}{n}dt = - \int_0^{x} t^{-1}\log(1-t)dt;$
integrate by parts then introduce as new variable of integration $s=1-t$.
Following the answer, I got $$- \int_0^{x} t^{-1}\log(1-t)dt=-\log(1-x)\log x+\int _1^ {1-x}\frac{\log(1-t)}tdt.$$
But how to proceed?