You can get the answer in the form of an infinite series. For an ellipse $E$ with semi major axis of length $a$ and semi minor axis of length $b$ with $a>b>0$, then we have the circumference $C$ having the formula
$$C=2\pi a\left[ 1-\sum\limits_{i=1}^{\infty }{{{\left( \prod\limits_{j=1}^{i}{\frac{2j-1}{2j}} \right)}^{2}}\frac{{{e}^{2i}}}{2i-1}} \right],$$ where $e=\sqrt{1-\frac{{{b}^{2}}}{{{a}^{2}}}}$ denotes the eccentricity of $E$.
Proof
We first parametrise the ellipse. That is $x=a\cos\theta$ and $y=b\sin\theta$. Then, by considering the eccentricity, we have ${{b}^{2}}={{a}^{2}}\left( 1-{{e}^{2}} \right)$.
Now, we compute $C$.
$$\begin{align}
& \int_{0}^{2\pi }{\sqrt{{{\left( \frac{\text{d}x}{\text{d}\theta } \right)}^{2}}+{{\left( \frac{\text{d}y}{\text{d}\theta } \right)}^{2}}}\text{ d}\theta }=\int_{0}^{2\pi }{\sqrt{{{a}^{2}}{{\sin }^{2}}\theta +{{b}^{2}}{{\cos }^{2}}\theta }\text{ d}\theta } \\
& =4\int_{0}^{\frac{\pi }{2}}{\sqrt{{{a}^{2}}{{\sin }^{2}}\theta +{{b}^{2}}{{\cos }^{2}}\theta }\text{ d}\theta } \\
& =4\int_{0}^{\frac{\pi }{2}}{\sqrt{{{a}^{2}}{{\sin }^{2}}\theta +{{a}^{2}}\left( 1-{{e}^{2}} \right){{\cos }^{2}}\theta }\text{ d}\theta } \\
& =4\int_{0}^{\frac{\pi }{2}}{\sqrt{{{a}^{2}}-{{a}^{2}}{{e}^{2}}{{\cos }^{2}}\theta }\text{ d}\theta } \\
& =4a\int_{0}^{\frac{\pi }{2}}{\sqrt{1-{{e}^{2}}{{\cos }^{2}}\theta }\text{ d}\theta } \\
& =4a\int_{0}^{\frac{\pi }{2}}{\sqrt{1-{{e}^{2}}{{\sin }^{2}}\left( \theta +\frac{\pi }{2} \right)}\text{ d}\theta } \\
& =4a\int_{\frac{\pi }{2}}^{\pi }{\sqrt{1-{{e}^{2}}{{\sin }^{2}}t}\text{ d}t} \\
& =4a\int_{0}^{\frac{\pi }{2}}{\sqrt{1-{{e}^{2}}{{\sin }^{2}}\theta }\text{ d}\theta }
\end{align}$$
By the Reduction Formula which involves integration by parts, one can show that$$\int_{0}^{\frac{\pi }{2}}{{{\sin }^{2i}}\theta \text{ d}\theta }=\frac{\pi }{2}\prod\limits_{j=1}^{i}{\frac{2j-1}{2j}}.$$
Using the Binomial Theorem and Fubini's Theorem,
$$\begin{align}
& 4a\int_{0}^{\frac{\pi }{2}}{\sqrt{1-{{e}^{2}}{{\sin }^{2}}\theta }\text{ d}\theta }=4a\int_{0}^{\frac{\pi }{2}}{\sum\limits_{i=0}^{\infty }{\left( \begin{matrix}
{}^{1}/{}_{2} \\
i \\
\end{matrix} \right)}{{\left( -{{e}^{2}}{{\sin }^{2}}\theta \right)}^{i}}\text{ d}\theta } \\
& =4a\sum\limits_{i=0}^{\infty }{\left( {{e}^{2i}}\prod\limits_{j=1}^{i}{\frac{{}^{3}/{}_{2}-j}{j}}\int_{0}^{\frac{\pi }{2}}{{{\sin }^{2i}}\theta \text{ d}\theta } \right)} \\
& =2\pi a\sum\limits_{i=0}^{\infty }{\left( {{e}^{2i}}\prod\limits_{j=1}^{i}{\frac{{}^{3}/{}_{2}-j}{j}}\prod\limits_{j=1}^{i}{\frac{2j-1}{2j}} \right)} \\
& =2\pi a\sum\limits_{i=0}^{\infty }{\left( {{e}^{2i}}\prod\limits_{j=1}^{i}{\frac{3-2j}{2j}}\prod\limits_{j=1}^{i}{\frac{2j-1}{2j}} \right)} \\
& =2\pi a\sum\limits_{i=0}^{\infty }{\left( {{e}^{2i}}{{\left( -1 \right)}^{i}}\prod\limits_{j=1}^{i}{\frac{2j-3}{2j}}\prod\limits_{j=1}^{i}{\frac{2j-1}{2j}} \right)} \\
& =2\pi a\sum\limits_{i=0}^{\infty }{\left[ {{\left( \prod\limits_{j=1}^{i}{\frac{2j-1}{2j}} \right)}^{2}}\frac{{{e}^{2i}}{{\left( -1 \right)}^{i}}}{1-2i} \right]} \\
& =2\pi a\sum\limits_{i=0}^{\infty }{\left[ {{\left( \prod\limits_{j=1}^{i}{\frac{2j-1}{2j}} \right)}^{2}}\frac{{{e}^{2i}}{{\left( -1 \right)}^{i}}}{1-2i} \right]} \\
& =2\pi a\left[ 1-\sum\limits_{i=1}^{\infty }{{{\left( \prod\limits_{j=1}^{i}{\frac{2j-1}{2j}} \right)}^{2}}\frac{{{e}^{2i}}}{2i-1}} \right].
\end{align}$$
Remark: $$\prod\limits_{j=1}^{i}{\frac{2j-1}{2j}}=\frac{\left( 2i \right)!}{{{2}^{2i}}{{\left( i! \right)}^{2}}}$$