Recall from the proof of the Rankine-Hugoniat Condition, that
$$\frac{d}{dt} \int_{x_1}^{x_2} u dx = \int_{x_1}^{s(t)} \frac{\partial u}{\partial t} dx + u(s - \epsilon) \frac{ds}{dt} + \int_{s(t)}^{x_2} \frac{\partial u}{\partial t} dx - u(s + \epsilon) \frac{ds}{dt}$$
for some $\epsilon$ which allows us to approximate $u$ with a continuously smooth function. Now, we also take note of several things:
$$\int_{x_1}^{x_2} \frac{\partial }{\partial x} u^3 dx = \int_{x_1}^{s(t) - \epsilon} \frac{\partial }{\partial x} u^3 dx + \int_{s(t) + \epsilon}^{x_2} \frac{\partial }{\partial x} u^3 dx + [u^3]$$
Therefore, the complete equation becomes:
$$\int_{x_1}^{s(t)} \frac{\partial u}{\partial t} dx + u(s - \epsilon) \frac{ds}{dt} + \int_{s(t)}^{x_2} \frac{\partial u}{\partial t} dx - u(s + \epsilon) \frac{ds}{dt} + \int_{x_1}^{s(t) - \epsilon} \frac{\partial }{\partial x} u^3 dx + \int_{s(t) + \epsilon}^{x_2} \frac{\partial }{\partial x} u^3 dx + [u^3] = -\alpha \int_{x_1}^{x_2} u dx$$
Solving for $\frac{ds}{dt}$:
$$\frac{ds}{dt} = \frac{\int_{x_1}^{s(t) - \epsilon} \frac{\partial }{\partial x} u^3 dx + \int_{s(t) + \epsilon}^{x_2} \frac{\partial }{\partial x} u^3 dx + [u^3] + \alpha \int_{x_1}^{x_2} u dx}{[u]}$$
Now, what should happen when you evaluate $\alpha \int_{x_1}^{x_2} u dx$?. Well, we notice that:
$$\alpha \int_{x_1}^{x_2} u dx = \alpha \int_{x_1}^{s(t)} u dx + \alpha \int_{s(t)}^{x_2} u dx$$
Therefore, can a conclusion be made about the quantity:
$$\int_{x_1}^{s(t) - \epsilon} \frac{\partial }{\partial x} u^3 dx + \int_{s(t) + \epsilon}^{x_2} \frac{\partial }{\partial x} u^3 dx + \alpha \int_{x_1}^{s(t)- \epsilon} u dx + \alpha \int_{s(t) + \epsilon}^{x_2} u dx$$
Specifically, what happens when $x_1 \rightarrow s(t) - \epsilon$ and $x_2 \rightarrow s(t)+ \epsilon$? We can consider this limit because we can get arbitrarily closer to the shock.
In essence, shocks don't particularly depend on the inhomogenous component, unless that component was something like the Dirac Delta function, which adds some fun to the problem.