Find $\lim_{n\to \infty}((n+1)!)^{\frac{1}{n+1}}-((n)!)^{\frac{1}{n}}.$
We need to deal the limit $\lim_{n\to \infty} \frac{\log(1)+\log(2)+...+\log(n)}{n}$. We know that $\lim_{n\to \infty} \log(n)=\infty \implies \lim_{n\to \infty} \frac{\log(1)+\log(2)+...+\log(n)}{n}=\infty$(since, By Cauchy's first theorem on limit). Hence we get $\infty-\infty$. How do I show that there exists finite limit?