We denote the following statement as $A$:
$$\forall \varepsilon > 0\ \exists \delta > 0\ \text{s.t. } |f(x) - f(x_0)| < \varepsilon \implies |x - x_0| < \delta $$
The following answers are taken from "The epsilon-delta definition of continuity", answer by @RyanReich:
1) For $c \in \mathbb{R}$ consider the constant function $f(x) = c$. Given $x_0 \in \mathbb{R}$, taking $\varepsilon = 1$, note that for any $\delta > 0$ if $x = x_0 + \delta$ we have that
- $| f(x) - f(x_0) | = | c - c | = 0 < 1 = \varepsilon$; but
$| x - x_0 | = |(x_0 + \delta ) - x_0 | = \delta \not< \delta$.
Therefore the implication $| f(x) - f(x_0) | < \varepsilon \rightarrow | x - x_0 | < \delta$ does not hold. It follows that the function $f$ does not satisfy the given property.
2) Every function satisfy the given property because no matter what $\epsilon$ is, so long as we have $|f(x) - f(a)| < \epsilon$ just choose $\delta = 2|x - a|$, and then we have $|x - a| < \delta$.
I am a little bit confused. If the constant function satisfy the propert $A$ or not? According to first answer they do not satisfy but according to second answer they do. I mean that
$f$-constant$\Rightarrow$$A$ $\wedge$ $f$-constant$\Rightarrow$$\neg A$ which implies $f$-constant$\Rightarrow$ $f$-is not constant.
Where is my mistake i can not find.