Consider $u_t + uu_x + \alpha u = 0$ for $t > 0$, all $x$ where $\alpha > 0$ is a constant. Find the characteristic equations for the equation with initial data $u(x, 0) = f(x)$ given. Show that a shock cannot form if $\alpha \geq \max_{r \in H}|f'(r)|$ where $H = \{r : f'(r) < 0\}$ or if $H$ is empty.
So far, I've found the characteristics by parametrizing $$\begin {cases} x_s=u, x(0,r)=r \\ t_s=1,t(0,r)=0 \\ u_s = -\alpha u, u(0,r)=f(r)\end {cases}$$ Then $\frac{du}{ds}=-\alpha u \Rightarrow u = C_1 e^{-\alpha s}$. Considering the initial condition, $u = f(r)e^{-\alpha s}.$
$\frac{dt}{ds} = 1 \Rightarrow t = s$ (since $t(0,r)=0$)
$\frac{dx}{ds}=u=f(r)e^{-\alpha s} \Rightarrow x = -\frac{1}{\alpha}f(r)e^{-\alpha s}+\frac{1}{\alpha}f(r)+r$ (since $x(0,r)=r$), i.e. $x = -\frac{1}{\alpha}f(r)e^{-\alpha t}+\frac{1}{\alpha}f(r)+r$
So how do we show that a shock cannot form?