By applying the definition of the hyperbolic tangent function in terms of the exponential we obtain
$$\begin{align}
\int_0^{\infty}\log(\tanh(x))dx&=\int_0^{\infty}\log\left(\frac{e^x-e^{-x}}{e^x+e^{-x}}\right)dx \\
&=\int_0^{\infty}\log\left(\frac{1-e^{-2x}}{1+e^{-2x}}\right)dx\\
&=\int_0^{\infty}\log\left(1-e^{-2x}\right)-\log\left(1+e^{-2x}\right)dx
\end{align}$$
Now by expanding the logarithm as a series $($!$)$ we further get
$$\begin{align}
\int_0^{\infty}\log\left(1-e^{-2x}\right)-\log\left(1+e^{-2x}\right)dx&=\int_0^{\infty}-\sum_{n=1}^{\infty}\frac1{n}e^{-2nx}+\sum_{n=1}^{\infty}\frac{(-1)^n}{n}e^{-2nx}dx\\
&=-\sum_{n=1}^{\infty}\left[-\frac{e^{-2nx}}{2n^2}\right]_0^{\infty}+\sum_{n=1}^{\infty}\left[(-1)^{n+1}\frac{e^{-2nx}}{2n^2}\right]_0^{\infty}\\
&=-\sum_{n=1}^{\infty}\frac1{2n^2}-\sum_{n=1}^{\infty}\frac{(-1)^{n+1}}{2n^2}\\
&=-\frac12\zeta(2)-\frac12\eta(2)\\
&=-\frac12\frac{\pi^2}6-\frac12\frac{\pi^2}{12}\\
&=-\frac{\pi^2}8
\end{align}$$
Which is the desired result. $\zeta(s)$ denotes the Riemann Zeta Function and $\eta(s)$ the Dirichlet Eta Function respectively for which the values are known.
Anyway this solution is kind of unsteady since I cannot really justify the validity of the power series of the logarithmic functions $($which is normally restricted to $|x|<1$ $)$ nor the termwise integration. Nevertheless it leads to the right solution.
EDIT:
As illustrated by ComplexYetTrivial within the comments the validity of the series expansion of the logarithm is guaranteed due the the fact that $e^{-2x}<1$ for all $x>0$ from where the series converges. Whereas the termwise integration is justified by the monotone dominate convergence theorem. Thus my proposed solution seems to be entirely fine.