0

Question:

Find the value $$A=\lim_{x \rightarrow 0 }(\frac{(1+x)^{1/x} - e + \frac{ex}{2}}{x^2})$$

I found the value $$A=\lim_{x \rightarrow 0 }(\frac{(1+x)^{1/x} - e + \frac{ex}{2}}{x^2})=\lim_{x \rightarrow 0 }( \frac{e- e + ex/2}{x^2}) =0 $$

Is this correct ?

jasmine
  • 14,457

1 Answers1

3

Assuming that you know Taylor series $$a=(1+x)^{\frac 1x}\implies \log(a)={\frac 1x}\log(1+x)={\frac 1x}\left(x-\frac{x^2}{2}+\frac{x^3}{3}+O\left(x^4\right) \right)$$ that is to say $$\log(a)=1-\frac{x}{2}+\frac{x^2}{3}+O\left(x^3\right)$$ Continue with Taylor using $$a=e^{\log(a)}=e-\frac{e }{2}x+\frac{11 e }{24}x^2+O\left(x^3\right)$$