Let $\mathfrak m$ be a maximal ideal of $\mathbb Z[X_1,...,X_n]$;
then is it necessarily true that $\mathbb Z[X_1,...,X_n]/\mathfrak m$ is finite ?
Let $\mathfrak m$ be a maximal ideal of $\mathbb Z[X_1,...,X_n]$;
then is it necessarily true that $\mathbb Z[X_1,...,X_n]/\mathfrak m$ is finite ?
Yes, it follows from Zariski's lemma.