Prove that $(X,\Vert {\cdot}\Vert_2)$ is not complete where $X=C[-2,2]$ and \begin{align}\Vert f\Vert_2=\left(\int_{-2}^{2}|f(t)|^2 dt\right)^{1/2}.\end{align}
MY TRIAL
It suffices to produce a Cauchy sequence in $C[-2,2]$ that does not converge to a point in $C[-2,2]$.
Consider the function defined by
\begin{align} f_n(t)=\begin{cases}0,& \text{if}\;-2\leq t\leq 0,\\nt,& \text{if}\;0\leq t\leq \frac{1}{n},\\1 &\text{if}\;\frac{1}{n}\leq t\leq 2.\end{cases} \end{align} Clearly, the above function is continuous by Pasting Lemma. Next, we show that the function is Cauchy.
Let $m,n\in \Bbb{N}$ such that $m\geq n.$ Then, we show that \begin{align} \Vert f_n-f_m\Vert_2=\left(\int_{-2}^{2}|f_m(t)-f_n(t)|^2 dt\right)^{1/2} \to 0,\; \text{as}\;n\to \infty.\end{align}
Now, \begin{align} \Vert f_n-f_m\Vert_2\leq\left(\int_{-2}^{2}|f_m(t)||f_m(t)-f_n(t)| +|f_n(t)||f_m(t)-f_n(t)| dt\right)^{1/2} \end{align}
We know that \begin{align} \int_{-2}^{2}|f(t)| dt\leq\sqrt{4}\left(\int_{-2}^{2}|f(t)|^2 dt\right)^{1/2}\end{align}
So, \begin{align} \Vert f_n-f_m\Vert_2\leq\left(\int_{-2}^{2}|f_m(t)||f_m(t)-f_n(t)|dt +\int_{-2}^{2}|f_n(t)||f_m(t)-f_n(t)| dt\right)^{1/2} \end{align}
I'm stuck here and don't know how to proceed. Any help please?