Let $x$ be a real number and let
$$f(x)=\sum_{ z = re^{\theta i} \in\mathbb{Z}[i] \\ r \le x \\ 0\le \theta \le \pi/2}\frac{1}{z^s}$$
Is it possible to compute in (terms of the $\zeta$ function perhaps) $$\xi (s)=\lim_{x\to\infty} f_s(x)$$
It looks just by toying around that $\xi(2)$ is divergent. Does $\xi$ converge for larger $s$?
Here's some empirical evidence that $\xi(2)$ diverges.
Let $\tau(n) : \mathbb{N} \to \mathbb{N}[i]$ be a pairing function and let $\tau(n)=x_n+y_ni$.
We are looking for $\frac{1}{\tau(n)^2}=\frac{1}{(x_n+y_ni)^2}= \frac{(x_n-y_ni)^2}{(x_n^2+y_n^2)^2}= \frac{x_n^2-2x_ny_ni-y_n^2}{(x_n^2+y_n^2)^2}=\frac{x_n^2-y_n^2}{(x_n^2+y_n^2)^2}+i\frac{2x_ny_n}{{(x_n^2+y_n^2)^2}}$
We have then $$\sum_{ }\frac{1}{z^2} =\sum_{n=1 \\ x+yi=\tau(n)}^\infty\frac{x^2-y^2}{(x^2+y^2)^2}+2i\sum_{n=1 \\ x+yi=\tau(n)}^\infty\frac{xy}{(x^2+y^2)^2}$$ By numerical methods it seems to me that the sum diverges.