$f(x)=\arcsin(x)$
$f'(x)=\frac{1}{f^{-1}(x)}$
$f'(\arcsin(x))=\frac{1}{\sin'x}=\cos^{-1}x$
$(f^{(n-1)})'(x)=(\cos^{-1}x)^{(n-1)}$
It's a complex function: $x$ itself, $\cos x$, and $^{-1}$. Let's use the chain rule.
$(\cos^{-1}x)^{(n-1)}=\cos (x+\frac{(n-1)\pi}{2})\cdot (-1 \cdot -2 \cdot \cdots \cdot (-1-n+1+1))\cos^{-1-n+1}x=$
$=\cos (x+\frac{(n-1)\pi}{2})\cdot (-1)^{n-1}\cdot (n-1)!\cdot \cos^{-n} x$
$f^{(n)}(0)=\cos (\frac{(n-1)\pi}{2})\cdot (-1)^{n-1}\cdot (n-1)!$
If $n$ is even, then the cosine turns into zero, and the whole derivative becomes zero.
If $n$ is odd, then
$f^{(2k+1)}(0)=\cos (\frac{(2k)\pi}{2})\cdot (2k)!=(-1)^{k}\cdot (2k)!$.
The book, however, gives $(1\cdot 3\cdot \cdots \cdot (2k-1))^2$ for the odd case.
Do I misunderstand something fundamentally?