I am seeking alternate proofs for $$\sum_{n\geq0}\frac{\Gamma^2(n+1)}{\Gamma(2n+2)}=\frac{2\pi}{3^{3/2}}$$ Here's mine:
Recall that, for $x\in(0,2)$, $$\frac1x=\sum_{n\geq0}(1-x)^n$$ Hence we have that, for $\frac{1-\sqrt5}2<x<\frac{1+\sqrt5}2$, $$\frac1{x^2-x+1}=\sum_{n\geq0}x^n(1-x)^n$$ Which gives $$ \begin{align} \int_0^1\frac{\mathrm dx}{x^2-x+1}=&\int_0^1\sum_{n\geq0}x^n(1-x)^n\mathrm dx\\ =&\sum_{n\geq0}\int_0^1x^n(1-x)^n\mathrm dx\\ =&\sum_{n\geq0}\frac{\Gamma^2(n+1)}{\Gamma(2n+2)} \end{align} $$ That last step was from the definition of the Beta function: $$B(a,b)=\int_0^1t^{a-1}(1-t)^{b-1}\mathrm dt=\frac{\Gamma(a)\Gamma(b)}{\Gamma(a+b)}$$ Setting $I=\int_0^1\frac{\mathrm dx}{x^2-x+1}$, we complete the square: $$I=\int_0^1\frac{\mathrm dx}{(x-\frac12)^2+\frac34}$$ Preforming the substitution $x=\frac{1+3^{1/2}\tan u}2$, we have $$I=\frac{3^{1/2}}2\int_{-\pi/6}^{\pi/6}\frac{\sec^2u\ \mathrm du}{\frac34+\frac34\tan^2u}$$ And with a little simplification, we arrive at $$\sum_{n\geq0}\frac{\Gamma^2(n+1)}{\Gamma(2n+2)}=\frac{2\pi}{3^{3/2}}$$ Which brings me to my questions. How else can we prove this? What other series can be evaluated using similar tricks? Have fun!