Given the usual surjective homomorphism $ Φ:\operatorname{SU}(2)\to \operatorname{SO}(3)$ that maps a quaternion to a rotation matrix,
Does there exist a continuous function $f:\operatorname{SO}(3)\to \operatorname{SU}(2)$ such that $ \Phi \circ f = \operatorname{Id}$ on $\operatorname{SO}(3)$?
If yes, what would be this map be?
Thank you