This is not the complete answer, but it finds all differentiable functions $f:\mathbb R\rightarrow\mathbb R$ satisfying $f(x+y)=f(x)\cdot f(y), \forall x,y\in\mathbb R$.
Since $f$ is differentiable,
$f'(x)=\lim_{h\to0}\frac{f(x+h)-f(x)}h=\lim_{h\to0}\frac{f(x)\cdot f(h)-f(x)}h=f(x)\cdot\lim_{h\to0}\frac{f(h)-1}h=f(x)\cdot f'(0), \forall x\in\mathbb R$
$\implies f'(x)=f(x)\cdot f'(0)$
Integrate this equation to obtain $f(x)=ke^{f'(0)x}$.
Since $f(x+y)=f(x)\cdot f(y), k=k^2\implies k=0,1$. Thus, the differentiable solutions of this functional equation are $f(x)=0,\ e^{kx}; k\in\mathbb R$.