$H$ is a Hilbert space, and $T\in B(H)$ continuous and Fredholm operator. Same books in definition of Fredholm use (when work in Banach space)
$\operatorname{ind}(T)=\dim(\ker(T))-\dim(\operatorname{coker}(T))$
and another's (when work with Hilbert space)
$\operatorname{ind}(T)=\dim(\ker(T))-\dim(\ker(T^{*}))$ , $T^{*}$ is the adjoint operator
so how can i show that
$\dim(\operatorname{coker}(T))=\dim(\ker(T^{*}))$
$\operatorname{coker}(T)=H/T(H)$ and $Ker(T^{*})=(T(H))^{\perp}$. so in Hilbert is true $H/T(H)\approx (T(H))^{\perp}$ ?
thanks