Let $X$ be a vector space. I was able to prove that $\Vert\cdot \Vert:X\to \Bbb{R},$ is a convex function, i.e., for all $x,y\in X$ and $\lambda \in [0,1],$
\begin{align} \Vert \lambda x+(1-\lambda)y \Vert \leq \lambda \Vert x\Vert+(1-\lambda)\Vert y \Vert\end{align}
Now, I want to prove that $\Vert\cdot \Vert^2:X\to \Bbb{R},$ where $X$ is a vector space, is convex. So, here's what I've done!
MY WORK
\begin{align} \Vert \lambda x+(1-\lambda)y \Vert^2 \leq \left( \lambda \Vert x\Vert+(1-\lambda)\Vert y \Vert\right)^2,\;\;\text{for all}\;\; x,y\in X\;\; \text{and}\;\; \lambda \in [0,1].\end{align}
So, any help please on how to proceed?