We work in $M_n(\mathbb{C})$.
We put $M=uX+vY,N=wX+tY$ and we seek the complex numbers $u,v,w,t$ so that $ut-vw\not= 0$ and the coefficients of $X^2,Y^2$ are $0$.
We obtain, for example, $M=X+Y,N=-jX-j^2Y$, where $j=\exp(2i\pi/3)$, and $XY=j^2YX$.
Therefore $MN-NM=(j-j^2)(XY-YX)$ and $\det(MN-NM)=0$ iff $\det(XY-YX)=0$ iff $\det(YX)=0$.
Since $\det(XY)=j^{2n}\det(YX)$, there are $2$ cases
i) $n$ is not a multiple of $3$. Then $\det(XY)=0$ and we are done.
ii) $n$ is a multiple of $3$. Then, over $\mathbb{C}$, the required result is false
Example for $n=3$: $X=\begin{pmatrix}0&0&1\\1&0&0\\0&1&0\end{pmatrix},Y=\begin{pmatrix}0&1&0\\0&0&j\\j^2
&0&0\end{pmatrix}$.