The binomial coefficient for a given pair of $n \geq k \geq 0$ integers can be expressed in terms of a Pochhammer symbol as the following.
$$
\binom n k = \frac{(-1)^k(-n)_k} {k!}.
$$
The expression is valid even if $n$ is an arbitrary real number.
Here we note two things.
- The Pochhammer symbol $(-n)_k$ is zero, if $n \geq 0$ and $k > -n$.
- The factorial $k!$ can be written as $(1)_k$.
Using these observations, we can express your sums in terms of a generalized hypergeometric function $_pF_q$ as the following. For the sum of the binomial coefficients, we have
$$
\sum_{k=0}^n \binom n k = \sum_{k=0}^n \frac{(-1)^k(-n)_k}{k!} = \sum_{k=0}^\infty (-n)_k{\frac{(-1)^k}{k!}} = {_1F_0}\left({{-n}\atop{-}}\middle|\,-1\right).
$$
For the sum the square of the binomial coefficients, we have
$$
\sum_{k=0}^n {\binom n k}^2 = \sum_{k=0}^n \left(\frac{(-1)^k(-n)_k}{k!}\right)^2 = \sum_{k=0}^\infty \frac{\left((-n)_k\right)^2}{k!} \cdot \frac{1}{k!} = {_2F_1}\left({{-n, -n}\atop{1}}\middle|\,1\right).
$$
And for the sum of the cube of the binomial coefficients $-$ also known as Franel numbers $-$, we have
$$
\sum_{k=0}^n {\binom n k}^3 = \sum_{k=0}^n \left(\frac{(-1)^k(-n)_k}{k!}\right)^3 = \sum_{k=0}^\infty \frac{\left((-n)_k\right)^3}{(k!)^2} \cdot \frac{(-1)^k}{k!} = {_3F_2}\left({{-n, -n, -n}\atop{1, 1}}\middle|\,-1\right).
$$
In general, for a positive integer $r$, we have the binomial sum
$$
\begin{align*}
\sum_{k=0}^n {\binom n k}^r &= \sum_{k=0}^n \left(\frac{(-1)^k(-n)_k}{k!}\right)^r = \sum_{k=0}^\infty \frac{\left((-n)_k\right)^r}{(k!)^{r-1}} \cdot \frac{(-1)^{rk}}{k!} \\ &= {_rF_{r-1}}\left({{-n, -n, \dots, -n}\atop{1, \dots, 1}}\middle|\,(-1)^r\right).
\end{align*}
$$