Consider two distinct geodesics $\gamma_1$ and $\gamma_2$ in a CAT($0$) space, issued from the same base point. A trivial example where we have $\angle(\gamma_1, \gamma_2)=0$ is when $\gamma_1(t) = \gamma_2(t)$ for $t$ smaller than some $\varepsilon > 0$. In this case, I say that they define the same germ.
My question is, is there examples of CAT(0) spaces with geodesics meeting with angle 0 and every geodesic is non-branching ?
The only class of examples I know of non-branching geodesics meeting with angle $0$ are constructed as follow: consider the following subset of the Euclidian plane, with induced length-metric, $X = \{ (x,y); 0 \le x \le 1, 0 \le y \le x^2 \}$. It is a CAT(0) space, the geodesic between $(0,0)$ and $(1,0)$ is the segment and the geodesic between $(0,0)$ and $(1,1)$ is the arc of parabola. These geodesics meet at $(0,0)$ with angle $0$ and they don't define the same germ.
However, in this space there exist branching geodesics, for example the geodesic between $(0,0)$ and $(1, t)$ for $t>0$ all define the same germ.
Edit: I add a description of these geodesics. The geodesic from $(0,0)$ to $(1,t)$ is an arc of parabola from $(0,0)$ to $P$ concatenated with the segment $[P, (1,t)]$ where $P$ is the point on the parabola closest to the origin such that the segment $[P, (1,t)]$ lies in $X$.