$$\begin{align}
\int\sec x\;dx
&=\int\sec x\cdot\frac{\sec x+\tan x}{\sec x+\tan x}\;dx
\\
&=\int\frac{\sec^2x+\sec x\tan x}{\sec x+\tan x}\;dx
\\
(\text{Letting }u=\sec x+\tan x&\text{ and }du=\sec x\tan x+\sec^2 x\;dx)
\\
&=\int\frac{du}{u}
\\
&=\log|u|+C
\\
&=\log|\sec x+\tan x|+C
\end{align}$$
Now, the output I get from Mathematica is:
$$\begin{align}
-\log(\cos\frac{x}{2}-\sin\frac{x}{2})+\log(\cos\frac{x}{2}+\sin\frac{x}{2})
&=\log\left(\frac{\cos\frac{x}{2}+\sin\frac{x}{2}}{\cos\frac{x}{2}-\sin\frac{x}{2}}\right)
\\
&=\log\left(\frac{(\cos\frac{x}{2}+\sin\frac{x}{2})^2}{(\cos\frac{x}{2}-\sin\frac{x}{2})(\cos\frac{x}{2}+\sin\frac{x}{2})}\right)
\\
&=\log\left(\frac{\cos^2\frac{x}{2}+\sin^2\frac{x}{2}+2\sin\frac{x}{2}\cos\frac{x}{2}}{\cos^2\frac{x}{2}-\sin^2\frac{x}{2}}\right)
\\
&=\log\left(\frac{1+\sin(2\cdot\frac{x}{2})}{\cos(2\cdot\frac{x}{2})}\right)
\\
&=\log\left(\frac{1+\sin x}{\cos x}\right)
\\
&=\log(\sec x+\tan x)
\end{align}$$