2

I want to show

$$\log(2) = \sum_{k = 1}^{\infty} \frac{1}{k \cdot 2^{k}}.$$

So, I start with the geometric series:

$$\frac{1}{1 - x} = \sum_{n = 0}^{\infty} x^{n} $$

Then take the integral to get

$$\log(1 - x) = -\sum_{n = 1}^{\infty} \frac{x^{n}}{n}.$$

Then plug in $x = -1$ to get

$$\log(2) = -\sum_{n = 1}^{\infty} \frac{(-1)^{n}}{n} = \sum_{n = 1}^{\infty} \frac{(-1)^{n + 1}}{n},$$

but this isn't equal to the original equality. Why not? How can I do the problem?

2 Answers2

1

Plug in $x=\dfrac12$ instead, and you will get the equality that you're after (since $\log\left(\frac12\right)=-\log(2)$).

0

Since the series are convergent for $|x| < 1$ then the "trick" is to use $x=1/2$. This leads to \begin{align} \frac{1}{1 - x} &= \sum_{n = 0}^{\infty} x^{n} \\ \log(1 - x) &= -\sum_{n = 1}^{\infty} \frac{x^{n}}{n} \end{align} becoming \begin{align} 2 &= \sum_{n=0}^{\infty} \frac{1}{2^{n}} \\ - \ln\left(1 - \frac{1}{2}\right) = \ln(2) &= \sum_{n=1}^{\infty} \frac{1}{2^{n} \, n} \end{align}

Leucippus
  • 26,329