I want to show
$$\log(2) = \sum_{k = 1}^{\infty} \frac{1}{k \cdot 2^{k}}.$$
So, I start with the geometric series:
$$\frac{1}{1 - x} = \sum_{n = 0}^{\infty} x^{n} $$
Then take the integral to get
$$\log(1 - x) = -\sum_{n = 1}^{\infty} \frac{x^{n}}{n}.$$
Then plug in $x = -1$ to get
$$\log(2) = -\sum_{n = 1}^{\infty} \frac{(-1)^{n}}{n} = \sum_{n = 1}^{\infty} \frac{(-1)^{n + 1}}{n},$$
but this isn't equal to the original equality. Why not? How can I do the problem?