I can't prove or refute uniform convergence of $ \sum_{n=1}^{n=+\infty} \frac{\sqrt{x}}{x^2+n}\sin(\frac{n}{x}),x>0$
I tried to use Abel's test, but I haven't got any idea how to prove сonvergence of $\sin(n/x) $
I tried : $\sin(1/x)+..+sin(n/x)=Im(e^{i\frac{1}{x}}+..+e^{i\frac{n}{x}})=Im(e^{i-\frac{1}{x}}\frac{e^{i\frac{n}{x}}-1}{e^{i\frac{1}{x}}-1})\leq \frac{1}{|e^{i\frac{1}{x}}-1|}$