Find Number of Non negative integer solutions of $x+2y+5z=100$
My attempt:
we have $x+2y=100-5z$
Considering the polynomial $$f(u)=(1-u)^{-1}\times (1-u^2)^{-1}$$
$\implies$
$$f(u)=\frac{1}{(1-u)(1+u)}\times \frac{1}{1-u}=\frac{1}{2} \left(\frac{1}{1-u}+\frac{1}{1+u}\right)\frac{1}{1-u}=\frac{1}{2}\left((1-u)^{-2}+(1-u^2)^{-1}\right)$$
we need to collect coefficient of $100-5z$ in the above given by
$$C(z)=\frac{1}{2} \left((101-5z)+odd(z)\right)$$
Total number of solutions is
$$S(z)=\frac{1}{2} \sum_{z=0}^{20} 101-5z+\frac{1}{2} \sum_{z \in odd}1$$
$$S(z)=540.5$$
what went wrong in my analysis?