Let $\lbrace F_n\rbrace_{n \in \mathbb{N_0}}$ be the Fibonacci sequence.
$F_{n+1}=F_{n-1}+F_{n-2}$ for $n \in \mathbb{N}$ with $n \geq 2$ and start values $F_0:=0$ and $F_1:=1$.
How to determine:
$\lim\limits_{n\to\infty}\frac{F_n}{F_{n+1}}$?
I used:
If $a=\lim\limits_{n\to\infty}\frac{F_n}{F_{n+1}}$ then
$a=\lim\limits_{n\to\infty}\frac{F_n}{F_{n+1}}=\lim\limits_{n\to\infty}\frac{F_n}{F_n+F_{n-1}}$
Here I don't know how to continue.