How to prove that $\left(-18+\sqrt{325}\right)^{\frac{1}{3}}+\left(-18-\sqrt{325}\right)^{\frac{1}{3}} = 3$ in a direct way ?
I have found one indirect way to do so: Define $t=\left(-18+\sqrt{325}\right)^{\frac{1}{3}}+\left(-18-\sqrt{325}\right)^{\frac{1}{3}}$, and then observe $t$ is a root of $f(x) = x^3 + 3x - 36 = 0$. Also observe that $f(3) = 0$. Now $f(x)$ has only one real root, since $f'(x) = x^2+3$ has no real solution. So $t =3$, as desired.
But I couldn't find any direct/algebraic way of fiddling it for a while. I guess morever this is true: $\left(-\frac{t(t^2+3)}{2}+\sqrt{\left[\frac{t(t^2+3)}{2}\right]^2 + 1}\right)^{\frac{1}{3}}+\left(-\frac{t(t^2+3)}{2}-\sqrt{\left[\frac{t(t^2+3)}{2}\right]^2 + 1}\right)^{\frac{1}{3}} = t$, which can possibly be proved in the same indirect way but I don't know how to prove this by direct manipulation.
One way maybe is to write $z_+ = \left(-\frac{t(t^2+3)}{2}+\sqrt{\left[\frac{t(t^2+3)}{2}\right]^2 + 1}\right)^{\frac{1}{3}}$, $z_- = \left(-\frac{t(t^2+3)}{2}-\sqrt{\left[\frac{t(t^2+3)}{2}\right]^2 + 1}\right)^{\frac{1}{3}}$, and writing $t = z_+ + z_-$, observe $z_+z_- = -1$, so $(x-z_+)(x-z_-) = x^2 - tx -1$, and then with Fundamental Theorem of Symmetric Polynomials, maybe calculating $(z_+^3 - z_-^3)^2$ and $(z_+^3 + z_-^3)$ in terms of $t$ would help ?
Surd
orCubeRoot
function. W|A has a different understanding of $(-x)^{1/3}$. Also, OP updated the numbers. – Kemono Chen Nov 24 '18 at 05:50CubeRoot[Sqrt[325] - 18] + CubeRoot[-Sqrt[325] - 18] // FullSimplify
shows the result is $-3$. – Kemono Chen Nov 24 '18 at 05:53