Help with the evaluation of this definite integral. I don't know where to start.
So we have :$\frac{\sqrt{\ln(9-x)}}{\sqrt{\ln(9-x)}+\sqrt{\ln(x+3)}}=\frac{\ln(9-x)-\sqrt{\ln(9-x)}\sqrt{\ln(x+3)} }{\ln(9-x)-\ln(x+3)}$ What's now?
Help with the evaluation of this definite integral. I don't know where to start.
So we have :$\frac{\sqrt{\ln(9-x)}}{\sqrt{\ln(9-x)}+\sqrt{\ln(x+3)}}=\frac{\ln(9-x)-\sqrt{\ln(9-x)}\sqrt{\ln(x+3)} }{\ln(9-x)-\ln(x+3)}$ What's now?
$\displaystyle \int_{2}^{4}\frac{\sqrt{\ln(9-x)} dx}{\sqrt{\ln(9-x)}+\sqrt{\ln(x+3)}}=I=\int_{2}^{4}\frac{\sqrt{\ln(x+3)} dx}{\sqrt{\ln(9-x)}+\sqrt{\ln(x+3)}}$
$\displaystyle\implies 2I=\int_{2}^{4}\frac{\sqrt{\ln(9-x)}+\sqrt{\ln(x+3)} \:dx}{\sqrt{\ln(9-x)}+\sqrt{\ln(x+3)}}=\int_{2}^{4} dx=2\implies I=1.$
$\left(\text{Using }\:\displaystyle\int_a^bf(x)dx=\int_a^bf(a+b-x)dx\right)$.