-1

Help with the evaluation of this definite integral. I don't know where to start.

So we have :$\frac{\sqrt{\ln(9-x)}}{\sqrt{\ln(9-x)}+\sqrt{\ln(x+3)}}=\frac{\ln(9-x)-\sqrt{\ln(9-x)}\sqrt{\ln(x+3)} }{\ln(9-x)-\ln(x+3)}$ What's now?

user376343
  • 8,311
user614287
  • 1,147

1 Answers1

0

$\displaystyle \int_{2}^{4}\frac{\sqrt{\ln(9-x)} dx}{\sqrt{\ln(9-x)}+\sqrt{\ln(x+3)}}=I=\int_{2}^{4}\frac{\sqrt{\ln(x+3)} dx}{\sqrt{\ln(9-x)}+\sqrt{\ln(x+3)}}$

$\displaystyle\implies 2I=\int_{2}^{4}\frac{\sqrt{\ln(9-x)}+\sqrt{\ln(x+3)} \:dx}{\sqrt{\ln(9-x)}+\sqrt{\ln(x+3)}}=\int_{2}^{4} dx=2\implies I=1.$

$\left(\text{Using }\:\displaystyle\int_a^bf(x)dx=\int_a^bf(a+b-x)dx\right)$.

Yadati Kiran
  • 2,320