Find all number $n\in \mathbb N$ such that $\varphi (n)=14$
$\varphi (n)=p_1^{\alpha_1-1}\cdot p_2^{\alpha_2-1}\cdots p_n^{\alpha_n-1}(p_1-1)\cdots (p_n-1)=14$ so number that divide 14 $x|14$ is $x\in \{1,2,7,14\}$ so $p_i-1=1$ or $p_i-1=2$ or $p_i-1=7$ or $p_i-1=14$ $i\in \{1,2,\ldots n \}$ so $p_i=2, p_i=3, p_i=8, p_i=15$ since $8,15$ is not prime number then $p\in \{2,3\}$.
If we say that $n=2^{\alpha}$ then $\varphi (n)=2^{\alpha-1}=14$ so there is not such $\alpha \in \mathbb N$ that $\varphi(n)=14$ so $n\not=2^{\alpha}$
The same is for $n=3^{\beta}$ and $ n=2^{\alpha}\cdot 3^{\beta}$. So there is not exist $n\in \mathbb N$ such that $\varphi(n)=14$
Is this ok?