Related to this Inequality $\sum\limits_{cyc}\frac{a^3}{13a^2+5b^2}\geq\frac{a+b+c}{18}$ and my second answer I have to prove this :
Let $a,b,c$ be real positive numbers then we have : $$\sum_{cyc}\left(\frac{a^3}{13a^2+5b^2}\right)\left(\frac{b^3}{13b^2+5c^2}\right)\geq \frac{ab+bc+ca}{18^2}$$
My try :
With Chebychev's inequality we get :
$$\sum_{cyc}\left(\frac{a^3}{13a^2+5b^2}\right)\left(\frac{b^3}{13b^2+5c^2}\right)\geq \left(\frac{ab+bc+ca}{3}\right)\left(\sum_{cyc}\left(\frac{a^2}{13a^2+5b^2}\right)\left(\frac{b^2}{13b^2+5c^2}\right)\right) $$
Remains to prove :
$$\sum_{cyc}\left(\frac{a^2}{13a^2+5b^2}\right)\left(\frac{b^2}{13b^2+5c^2}\right)\geq \frac{3}{18^2}$$
Or with the right substitution :
$$\sum_{cyc}\left(\frac{x}{13x+5y}\right)\left(\frac{y}{13y+5z}\right)\geq \frac{3}{18^2}$$
And after this I don't know what to do...
Can someone help me ?
Thanks