I am trying to show the function defined by: $$E(x)=\lim_{n\to\infty}\left(1+\frac{x}{n}\right)^n$$ satisfies the property: $$E(x)E(y)=E(x+y)$$
Assuming $E$ is well defined, I can interchange products and limits (?). We have:
$$\begin{aligned} E(x)E(y) &=\lim_{n\to\infty}\left(1+\frac{x}{n}\right)^n\lim_{n\to\infty}\left(1+\frac{y}{n}\right)^n \\ &=\lim_{n\to\infty}\left[\left(1+\frac{x}{n}\right)\left(1+\frac{y}{n}\right)\right]^n \\ &=\lim_{n\to\infty}\left[1+\frac{x+y}{n}+\frac{xy}{n^2}\right]^n\\ &=\lim_{n\to\infty} \sum_{k=0}^n\binom{n}{k}\left(1+\frac{x+y}{n}\right)^{n-k}\left(\frac{xy}{n^2}\right)^k \\ & = E(x+y)+\lim_{n\to\infty} \sum_{k=1}^n\binom{n}{k}\left(1+\frac{x+y}{n}\right)^{n-k}\left(\frac{xy}{n^2}\right)^k\end{aligned}$$ This is where I am stuck. I can see that, for any $k$: $$\binom{n}{k}\left(1+\frac{x+y}{n}\right)^{n-k}\left(\frac{xy}{n^2}\right)^k=\left(\frac{xy}{n}\right)^k\left(1+\frac{x+y}{n}\right)^{n-k}\prod_{r=0}^{k-1}\left(1-\frac{r}{n}\right)\overset{n\to\infty}\to 0$$ But because the sum increases in terms as $n$ increases, I feel like this is not sufficient to argue that the limit of it is $0$. Is that right? If so I'm not sure how to go about it and would appreciate some help.