Need to know if the following statements are true or false:
Let $S$ be a multiplicative set in $R$. Then $(S^{-1}R)[x,y,z]$ is always a flat $R$-module.
Let $I,J \subset R$ be proper ideals of $R$ such that $I+J=R$. Then $R/I$ is always flat $R$-module.
Let $R[[x]]$ be the formal power series ring over $R$. Then $R[[x]]/\left<\sum^{\infty}_{i=2} x^i\right>$ is always flat $R$-module.
$R/N(R)$ is always a flat $R$-module. ($N(R)$ the nilradical). False. Seen here. Sure?