0

i have $E[B]= \int_{\mathbb R+} P(Y-X>t)dt$ and i want to show this relation :
$\int_{\mathbb R+} P(Y-X>t)dt$=$\int_{\mathbb R}P(X < y, Y >y)dy$

I first began showing that for t ≥ 0, $ P(Y − X>t) = \int_{\mathbb R^2} 1_{y>x+t}f_{X|Y=y} (x) f_y(y) dxdy$

But i don't know how to continue

1 Answers1

1

$\int_{\mathbb R} P(X<y,Y>y)dy=\int_{\mathbb R}\int I_{\{X<y<Y\}} dPdy=\int_{\mathbb R}\int I_{\{X<y<Y\}} dydP=\int (Y-X)^{+} dP$ and $\int (Y-X)^{+} dP=\int_0^{\infty} P(Y-X>t)dt$. I have used Fubini's Theorem and the fact that $Z=\int_0^{\infty} P(Z>t)\, dt$ for any non-negative random variable $Z$. Take $Z=(X-Y)^{+}$.